
A L

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

-31 March 1998

4. TITLE AND SUBTITLE
Scalable Data and Sensor Fusion via Multiple-Agerif Hybrid Systems

6. AUTHOR(S)
W. Kohn, J.B. Remmel and A. Nerode

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Array Research Office
P.O.Box 12211
Research Triangle Park, NC 27709-2211

REPORT TYPE AND DATES COVERED
Technical Report

5. FUNDING NUMBERS

DAAH04-96-1-0341

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ft(u> *:r??*.ya-A»A'/*.^

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
We address the problem of finding an unbiased estimate of the plant state given that the data available is dynamic,
noisy, and given in a multiplicity of representations. The approach proposed in the study is unique because it
does not attempt to transform the data to a common representation. Rather we establish a framework, which
we call the Multiple Agent Hybrid Estimation Architecture, in which we allow heterogeneous data to flow
between individual agents in the network to improve their individual estimates of the current plant state.

19980519 181
14. SUBJECT TERMS

hetereogeneous sensors, agent architecture, control agent, communication network

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

35

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18

298-102

Enclosure 1

Technical Report
97-14

Scalable Data and Sensor Fusion
via Multiple-Agent Hybrid Systems

W. KOHN, J. B. REMMEL

AND A. NERODE

December 1997

DTIC QUALITY INSPECTED 2

Scalable Data and Sensor Fusion via
Multiple-Agent Hybrid Systems

Wolf Kohn*
HyBrithms Corp. f

11201 SE 8th Street #J140
Bellvue, WA 98004-6420

Jeffrey B. Remmel*
Department of Mathematics, University of California San Diego

La Jolla, CA 92093
Anil Nerode5

Center for Foundations of Intelligent Systems
625 Rhodes Hall, Cornell University

Ithaca, NY 14853-3801

Abstract

We address the problem of finding an unbiased estimate of the plant
state given that the data available is dynamic, noisy, and given in a mul-
tiplicity of representations. The approach proposed in the study is unique
because it does not attempt to transform the data to a common repre-
sentation. Rather we establish a framework, which we call the Multiple
Agent Hybrid Estimation Architecture, in which we allow heterogenous
data to flow between individual agents in the network to improve their
individual estimates of the current plant state.

«Research supported by Dept. of Commerce Agreement 70-NANB5H1164. E-mail:
skChybrithms.com

tFormerly known as Sagent Corporation.
Research supported by Dept. of Commerce Agreement 70-NANB5H1164. E-mail.

Jre5RL"archdsupportedby Dept. of Commerce Agreement 70-NANB5H1164, and the ARO
under the MURI program «Integrated Approach to Intelligent Systems , grant no. DAA
H04-9&-1-0341. E-mail: nerodeChybrid.cornell.edu

1 Introduction

The problem that we are addressing in this paper is the following. Suppose we
are given a suite of hetereogeneous sensors and their controlling agents which are
measuring the dynamics of a plant. For example, in the case where the agents
are monotoring a battlefield, the agents may be providing radar samples, scout
information, or satellite information. We assume that each sensor agent has a
model of the plant dynamics relative to its own domain. Moreover, we assume
that the sensor agents interact with each other in real time via a communica-
tions network. The fundamental problem is to find an unbaiased estimate of
the plant state given that the data available is dynamic, noisy, and given in a
multiplicity of representations. The approach proposed in the study is unique
because it does not attempt to transform the data to a common representation.
Rather we establish a framework which we call the Mutiple Agent Hybrid Es-
timation Achitecture (MAHEA), see figure 1, in which we allow hetereogenous
data to flow between indivdual agents in ehe network to improve their individual
estimates of the current plant state.

The outline of this paper is as follows. We start by providing a brief descrip-
tion of a MAHEA agent, the basics of a MAHEA agent models of the plant and
the procedure it uses to improve the its plant estimate over time. Basically each
agent of MAHEA, formulates a relaxed variational optimization problem whose
successful resolution produces an estimate of the plant. Each agent operates as
a real-time theorem prover in the domain of relaxed variational theory [35]. In
section 2, we shall give more details on the formulation of the relaxed variational
optimization problem and how the agent solves this problem. In section 3, we
provide a general description of how the agent theorem prover operates. We
note that the operation of the agent described in sections 2 and 3 are esentially
the same as the operation of an agent in our Multiple Agent Hybrid Control
Architecture, see [24, 25], which can be used to control a variety of processes
including automated manufacturing , mutimedia networks, flexible gun tubes,
and flight planning for missiles, and traffic management of highways.

The new results of this paper is presented in sections 4 and 5. In section 4, we
shall show how we can construct a special optimization criterion for the plane es-
timatation optimization problem which we call the Estimation Lagrangian. The
tvpe of Lagrangian that we need to construct is special for the plant estimation
problem in that we want the Lagrangian to be 0 at each point where the agent
has reached the desired estimate of the plant state. Such Lagrangians are not
suitable for most control problems. Finally in section 5, we shall describe our
mechanism to solve the problems of agent sychronization and how agents with
different models can produce coherent (synchronous) and compatible (common
view) estimates of a plant. Our solution to these problem uses the Noether
invariance conditions in a novel way.

Framework

Communication Network

ooo • • • o
Interagent Communication

Sensor Agents

Sensors

Battlefield

Figure 1: Agent Framework

2 The Multiple Agent Hybrid Estimation Ar-
chitecture

In this section, we describe the main operational and functional characteristics
an agent in a MAHEA network. As we mentioned in the introduction, our
Multiple Agent Hybrid Estimation Architecture is implemented as a distributed
system composed of agents and a communication network which we call the
logic communication network. The architecture realizing this system operates
as an on-line distributed theorem prover. At any update time, each active agent
generates estimation actions as side effects of proving an existentially quantified
subtheorem (lemma) which encodes the model of the plant as viewed by the
agent. The conjunction of lemmas at each instant of time, encodes the desired
behavior of the"entire network . Each agent of MAHEA, consists of five modules:
a Planner, a Dynamic Knowledge Base, a Deductive Inferences an Adapter and
a Knowledge Decoder. We briefly overview the functionality of an agent in
terms of its modules .

The basic architecture of an estimation agent is pictured in figure 2. The
agent consists of 5 modules with the following functionality:

1. Planner The Planner constructs and repairs the agent state estimation
optimization criteria which we refer to as the Estimation Lagrangian as-
sociated with the agent. In particular, the Planner generates a statement
representing the desired model of the estimation system as an existentially
quantified logic expression herein referred to as the Estimation Statement.

2. Inferencer The Inferencer determines whether there is a state estimate
for the agent's relaxed variational state estimation problem which is a
near optimal solution where the agent's Estimation Lagrangian is used
as a cost function. If there is such a solution, the agent infers a near
optimal estimation and sends data to the other agents. Othewise it infers
failure terms and a new state for the agent and reports the failure to
the other agents. In particular, the Inferencer determines whether the
Estimation Statement is a theorem in the theory currently active in the
knowledge base. If the Estimation Statement logically follows from the
current status of the Knowledge Base, the inferencer generates, as a side
effect of proving this Estimation Statement to be true, the current state
estimate of the Battlefield. If the Estimation Statement does not logically
follow from the current status of the Knowledge Base, that is, the desired
behavior is not realizable, the inferencer transmits the failed terms to the
Adapter module for replacement or modification.

3. Adapter The Adapter repairs failure terms and constructs correction
terms.

4. Knowledge Base The Knowledge Base stores and updates the agent'
plant model and constraints. The Knowledge Base also stores the re-
quirements of operations or processes within the scope of the agent's esti-
mation problem. It also encodes system constraints, interagent protocols
and constraints, sensory data, operational and logic principles and a set of
primitive inference operations defined in the domain of equational terms.

5. Knowledge Decoder The Knowledge Decoder receives and translates
the other agent's data.

To better understand, how these five modules function, we first need to
discuss the basic elements of an agent's model and how it behaves. We will
discuss this model in the next section and we will then follow with a more
detailed discussion of the five modules of a MAHEA agent.

2.1 An MAHEA Agent's Model

In general, a hybrid system has a hybrid state, the simultaneous dynamical
state of all plants and digital control devices. Properly construed, the hybrid
states will form a differentiable manifold which we call the carrier manifold of
the system. To incorporate the digital states as certain coordinates of points of
the carrier manifold, we "continualize" the digital states. That is, we view the
digital states as finite, real-valued, piecewise-constant functions of continuous
time and then we take smooth approximations to them. This also allows us to
consider logical and differential or variational constraints on the same footing,
each restricting the points allowed on the carrier manifold. In fact, all logical
or discontinuous features can be continualized without practical side-effects.
This is physically correct since for any semiconductor chip used in an analog

MAHEA Sensor Agent
Goal Agent State Estimate

V
A

Planner
Plan

Inferencer

A

Agent
Network —&*

Knowledge
Decoder Knowledge

Base

Correction Failure
Terms

Adapter
Terms

Figure MAHEA Agent Architecture

device, the zeros and ones are really just abbreviations for sensor readings of
the continuous state of the chip. Every constraint of the system, digital or
continuous, is incorporated into the definition of what points are on the carrier
mainifold. Lagrange constraints axe regarded as part of the definition of the
manifold as well, being restrictions on what points are on the manifold.

More specifically, let .4<, i = l,...,N{t) denote the agents active at the
current time t . In our model, t takes values on the real line. At each time t. the
status of each agent in the network is given by a point in a locally differentiable
manifold M [23]. The Estimation Lagrangian L* of an active agent A{ is given
by a continuous function,

Li : M x T -> BT (1)

where T is the real line (time space) and R+ is the positive real line. A point p
in the manifold M is represented by a data structure of the form:

p(id,pTOc(?roc-data),estimatt(&stimation-dcita),in(synch.da.ta), mp(mvlt.data)) (2)

Here id is an identifier taking values in a finite set ID, procQ is a relation
characterizing plant processes status which depends on a list of parameters
labeled procdata, whose parameters define the operational, load, and timing
characteristics of the process involved. The relation estimate captures attributes
of the plant being represented which depends on a list of parameters labeled
tstivn.ation.data whose parameters, among other things, characterize various
constraints of the plant representation of an agent at a level of abstraction
compatible with the logic communication network. The relation in() carries

synchronization information of the logic communication network. This includes
information such as priority level, connectivity and time constants. Finally, the
relation mpQ carries multiplicity information, that is, it represents the level of
network usability at this point. The associated parameter list, mult-data, is
composed of statistical parameters reflecting the logic network's load.

From an agent's point of view, the dynamics of the plant is characterized
by certain trajectories on the manifold M. These trajectories represent the
agent estimate of the state of the plant plus the flow of information through the
network and its status. Specifically, we need to define two items:

(i) The Estimation Lagrangian functions :

{L<(p,i) :*'€/(*)} (3)

where I{t) is the set of active agents at time t and

(ii) the actions or estimates issued by the agents.

We will see shortly that these actions are implemented as infinitesimal trans-
formations defined in M. The general structure of an Estimation Lagrangian
function in (3) for an active agent i at time t is given in (4) below:

Li(p,t) = Fi{Ui,L,ai)(p,t) ' (4)

where F; is a smooth function, L is the vector of Estimation Lagrangian func-
tions, Ui is the state estimation error function, and ou is the command action
issued by the i-th agent. We will devote the rest of this subsection to charac-
terizing this model.

We start with a discussion of the main characteristics of the manifold M.
In general a manifold M is a topological space (with topology 0) composed of
three items:

(a) A set of points of the form of (2).

(b) A countable family of open subsets of M, Ui such that

[jU^M.
i

(c) A family of smooth homeomorphisms,{©i : fa : U, -+ VJ}, where for each j,
Vj is an open set in Rk. The sets Ui are referred to in the literature as
coordinate neighborhoods or charts. For each chart Uj the corresponding
function fa is referred to as its coordinate chart.

The coordinate chart functions satisfy the following additional condition:

Given any charts Ui and Uj such that V\ n Uj # 0, the function
fa o <p~l : <pj(Ui n Uj) -> <t>j{Ui n Uj) is smooth.

In the literature, one usually finds an additional property, which is the Haus-
dorff property in the definition of manifolds [24]. Since this property does not
hold in our application we will not discuss it.

Now we proceed to customize the generic definition of the manifold to our
application. We start with the topology © associated with M. We note that the
points of M have a definite structure, see (2), whose structure is characterized
by the values, or more precisely by intervals of values, of the parameters in the
lists proc.data, estimation-data, synch-data and mult-data. The number of these
parameters equals k. The knowledge about these parameters is incorporated
into the model by defining a finite topology ft on Rk [4].

The open sets in ft are constructed from the clauses encoding what we know
about the parameters. The topology 0 of M is defined in terms of ft as follows:
For each open set W in ft such that W C V} C Rk, we require that the set
o~l(W) be in 0. The sets constructed in this way form a basis for 0 so that
a set U C M is open if and only if for each p € U, there is j and an open set
W 6 ft such that W C Vi and p <= <t>Jl(W).

To characterize the actions commanded by a MAHEA agent we need to
introduce the concept of derivations on M. Let Fp be the space of real valued
smooth functions / defined in a neighborhood a point p in. M. Let / and g be
functions in Fp. A derivation v of Fp is a map

v.Fp^Fp

that satisfies the following two properties:

v{f + g)(p) = W) 4- v{g))(p) (Linearity) (5)

v(f ■ g)(p) = (v(f) ■ y + / ■ v(9))(p) (Leibniz Rule) (6)

Derivations define vector fields on M and a class of associated curves called
integral curves [25]. Suppose that C is a smooth curve on M parameterized by
yj : I -+ M where I a subinterval of R. In local coordinates, p = (p1, ...,pk),
C is given by k smooth functions w(t) = (i)l{t),... ,uk{t)) whose derivative
with respect to t is denoted by Tp{t) = (ipl (t),..., rjjk(t)). We introduce an
equivalence relation on curves in M as the basis of the definition of tangent
vectors at a point in M [13]. Two curves ViW and wo{t) passing through a
point p are said to be equivalent at p (notation: rp\(t) ~ V2(0)i ^ tnere exists
n i r2 € -f such that

Wi(n) =t/)2(r2) =p (7)

Mi\) = Mvi)- (8)
Clearly, ~ defines an equivalence relation on the class of curves in M passing

through p. Let [ip] be the equivalence class containing i>. A tangent vector to
[ib] is a derivation, v\v, such that in local coordinates (p1,... ,p*), it satisfies the
condition that given any smooth function / : M -> R,

df(p) "iP(/)(p)=£^'«-0 0)

where p = tb(t). The set of tangent vectors associated with all the equivalence
classes at p defines a vector space called the tangent vector space at p, denoted
by TMP. The set of tangent spaces associated with points in M can be "glued"
together to form a manifold called the tangent bundle which is denoted by TM.

TM = (J TMP
p£m

For our purposes, it is important to specify explicitly how this glueing is imple-
mented. This will be explained below after we introduce the concept of a vector
field and discuss its relevance in the model.

A vector field on M is an assignment of a derivation v\p to each point p of
M which varies smoothly from point to point. That is, if p = (pl,-..,pk) are
local coordinates, then we can always write v\p in the form

i*
dpi

Then v is a vector field if the coordinate functions A,; are smooth.
Comparing (9) and (10) we see that if w is a parameterized curve in M whose

tangent vector at any point coincides with the value of v at a point p = w{t),
then in the local coordinates p = (t/;1(t),..., Vk{t)), we must have

&(t) = \j(p)forj = l,...,k. (11)

In our application, each command issued by the MAHEA agent is imple-
mented as a vector field in M. Each agent constructs its command field as a
combination of 'primitive' predefined vector fields. Since the chosen topology
for M. 0, is not metrizable, we cannot guarantee a unique solution to (11) in
the classical sense for a given initial condition. However, they have solutions in
a class of continuous trajectories in M called relaxed curves [29]. In this class,
the solutions to (11) are unique. We discuss the basic characteristics of relaxed
curves as they apply to our process control formulation and implementation
in Section 3. Next, we describe some of their properties as they relate to our
plant model and estimation process. For this objective, we need to introduce
the concept of flows in M.

If v is a vector field, any parameterized curve passing through a point p in
M is called an integral curve associated with u, if in local coordinates (5) holds.
An integral curve associated with a field v, denoted by #(i,p) is termed the flow
generated by v if it satisfies the following properties:

$(i, ${r,p)) = $(t 4- T,p) (semigroup property) (12)

$(0,p) =p (initial condition)

and

-j7V{t,P) = v !*(t,p) (Sow generation)

A Flow associated with actions
of agent i

T+A

Ai.„,= cx,ni(p)A Äin,= ctiA_(P')i A^-a^Cp«)*

Figure 3: Conceptual illustration of agent action schedule

Now we are ready to customize these concepts for our model. Suppose that
a MAHEA agent A{ is active. Let A > 0 be the width of the current decision
interval, [t, t + A). Let Ui(p, t) be the state estimation error at the beginning of
the interval. Agent .4* has a set of primitive actions:

{vi,i : j = 1. • • •, "i where Ui,j|p € TAfp for each pern} (13)

During the interval [t,t •+• A), agent A* schedules one or more of these actions
to produce a flow which will reduce the state estimation error. In particular,
Ai determines the fraction a,-,,,-(p, t) of A that action Vij must be executed as a
function of the current estimation requests Sr,i{^ P) anc^ t^ie vector of Estimation
Lagrangians L(jp.t) = (Li{p,t),...,LN(D) of the active agents in the MAHEA
network. Figure 3 conceptually illustrates a schedule of actions involving three
primitives. We will use this example as means for describing the derivation of
our model. The general case is similar.

The flow <ki associated with the schedule of Figure 3 can be computed from
the flows associated with each of the actions:

*i(T,p) = <

C *„i(n(r,p)ift<r<t + A<.ni

** ., (T, *„,.,., {T,p)) if t -r Aiini <T<t + Aiini -!- A^,
*^-,(r,*w.M(r,*v«..l(rIp)))

if t + Ai,ni 4- A,,n, < T < t + Ai,ni + A<,„, + Ai,„3

(14)
where A = da,ni + Ai,„2 + A<,„, and <*,„, + a*,«, + ailBs = 1. We note that
the flow $i given by (14) characterizes the evolution of the process as viewed

by agent .4*. The vector field Vi\p associated with the flow *, is obtained by
differentiation and the third identity in (12). This vector field applied at p is
proportional to

Vi\v = [vi,ni,[vi,n7,Vi.n3}] (15)

where [.,.] is the Lie bracket due to the parallelogram law, see [38]. The Lie
bracket is defined as follows: Let v and w, be derivations on M and let / :
M -*• R be any real valued smooth functions. The Lie bracket of v and w is the
derivation defined by

.{«,«/](/) =v(ti/(/))-u/(t/(/)),

see [9].
Thus the composite action Vi\p generated by the i-th agent to improve the

state estimation is a composition of the form of (15). Moreover from a version
of the Chattering lemma and duality [18j, we can show that this action can be
expressed as a linear combination of the primitive actions available to the agent
as follows.

j

£7J(a) = 1
j

with the coefficients 7J determined by the fraction of time that each primitive
action Vij is used by agent i.

The effect of the field defined by the composite action Vi\p on any smooth
function (equivalent function class) is computed by expanding the right hand
side of (14) in a Lie-Taylor series [9]. In particular, we can express the change
in the state estimation error Ui due to the flow over the interval A in terms of
Vi\p. The evolution of the state estimation error Ui over the interval starting at
point p is given by

Ui(t + XJ') = Ui{t,*i{t + Xp)) (17)

Expanding the right handside of (17) in a Lie-Taylor series around (t,p), we
obtain,

NP(£/-t(p,0))JA>
Ui{t + Xp") = J2 ;'!

where

Wrf^t(w-))"li) (18)
and

(wi|p)°(/) = /• for all /

In general, the series in the right handside of (18) will have countable many
non-zero terms. In our case, since the topology of M is finite because it is

10

generated by finitely many logic clauses, this series will have only finitely many
non-zero terms. Intuitively, this is so because in computing powers of deriva-
tions (i.e., limits of differences), we need only to distinguish among different
neighboring points. In our formulation of the topology of M, this can only be
imposed by the information in the clauses of the agent's Knowledge Base. Since
each agent's knowledge base has only finitely many clauses, there is a term in the
expansion of the series in which the power of the derivation goes to zero. This
is important because it allows the series in the right handside to be effectively
generated by a locally finite automaton. We will expand on the construction
of this automaton in the next section when we discuss the inference procedure
carried out by each agent.

We note that given the set of primitive actions available to each agent, the
composite action is determined by the vector of fraction functions Q;- . We will
see in the next section that this vector is inferred by each agent from the proof
of existence of solutions of an optimization problem.

Now we can write the specific nature of the model formulated in expression
(4). At time t and at point p S M the estimation error function of agent i is
given by :

Ui(p, t) = Ui(p, r) 4- Sr,i(p, t) + £ Qi.Mp, r) (19)
k

where t~ is the end point of the previous update interval, Sr.i is the estimation
request function to agent i, and Qi,k is a multiplier determining the required
degree of accuracy and the urgency of the estimate of the Agent k that Agent
i requires. This allocation is determined from the characteristics of the process
both agents are estimating and from the process description encoded in the
agent's knowledge base. The actual request from agent k to agent i is thus the
term, Qi,kLk(p, *")■ The information sent to agent i by agent k is the state
estimation function Lk(p,t~) at the end of the previous interval. Finally the
point p € M carries the current estimate of the process monitored by the agents
appearing in (19). Agent k thus contribute to Agent i's new estimate only if

Qi,k ± 0.
This concludes our description of the model. For space considerations, some

details have been left out. In particular those related to the strategy for activa-
tion and deactivation of agents. These will be discussed in a future paper.

3 The Five Modules
In each agent of MAHEA, the Estimation Statement is the formulation of a re-
laxed variational optimization problem whose successful resolution produces an
action schedule of the form of (15). Each agent operates as a real-time theorem
prover in the domain of relaxed variational theory [35]. A customized version
of this theory, enriched with elements of differential geometry, equational logic
and automata theory provides a general representation for the dynamics, con-
straints, requirements and logic of the Estimation Agent network . We devote
the rest of this section to the discussion of the main elements of this theory in

11

the context of the operational features of MAHEA. The architecture is com-
posed of two items: The Control Agent, and the logic communication Network.
These items are illustrated in Figures 5 and 6 respectively. We will disuss them
in the remaining of this section.

3.1 Architectural Elements of a control agent:
We will discuss next the functionality of the five modules of a control agent.

These are: the Knowledge Base, the Planner, the Inferences the Knowledge
Decoder and the Adapter.

3.1.1. Knowledge Base: The Knowledge Base consists of a set of equational
first order logic clauses with second order extensions. The syntax of clauses is
similar to the ones in the Prolog language. Each clause is of the form

Head*-Body (20)

where Head is a functional form, p(xi, ...xn), taking values in the binary set
[true, false] with x\, x%,..., xn variables or parameters in the domain M of the
MAHEA network. The symbol «- stands for logical implication. The variables
appearing in the clause head are assumed to be universally quantified. The
Body of a clause is a conjunction of one or more logical terms,

ei A ej A ... A efl (21)

where A is the logical 'and'. Each term in (21) is a relational form. A relational
form is one of the following: an equational form, an inequational form, a covering
form, or a clause head. The logical value of each of these forms is either true
or false. A relational form e* is true precisely at the set of tuples of vaiues Si
of the domain taken by the variables where the relational form is satisfied and
is false for the complement of that set. Thus for e; = ei{xx,... ,xn), Si is the
possibly empty subset of Mn ,

Si = {(an, • • •, xn) € Mn : e^(n,..., xn) = true}

so that
etOd,. ..,!„) = false if (an,..., xn) € Mn/Si.

The generic structure of a relational form is given in Table 1.
Form Structure Meaning !

equational tu(xi,. ...in) =v(ii,.. ■,In) equal
inequational w{xi,. ...X„) ^V{xi,.. ■.In) not equal

covering w(xi,. ..,!„) < u(ll,. •,In) partial order
clause head q(x\,... ,xn) recursion.chaining

Table 1. Structure of the Relational Form

12

Declartive Estimation Agent

Boundary Estimation Agent

Communication Path

Figure 4: Network of Cooperating Control Agents

In Table 1, w and v are polynomic forms with respect to a finite set of op-
erations whose definitional and property axioms are included in Che Knowledge
Base. A polynomic form vis an object of the form u(si,...,xn) = Hu6nvu^)-'^
where P.* is the free monoid generated by the variable symbols {xi,...,xn} un-
der juxtaposition. The term (V,UJ) is called the coefficient of v at _-•. The
coefficients of a polynomic form v take values in the domain of definition of the
clauses. The domain in which the variables in a clause head take values is the
manifold M described in section 2. The logical interpretation of (20) and (21)
is that the Head is true if the conjunction of the terms of Body are jointly true
for instances of the variables in the clause head. M is contained in the cartesian
product :

MCGxSxXxA (22)

where G is the space of goals, S is the space of sensory data, X is the space of
estimation states and .4 is the space of estimation actions. These were described
in section 2. G, S, X, and .4 are manifolds themselves whose topologicai struc-
ture are defined by the specification clauses in the Knowledge Base (see figure
7)_. These clauses, which are application dependent, encode the requirements on
the closed-loop behavior of the estimation model of the agent. In fact the closed
loop behavior, which we will define later in this section in terms of a variational
formulation, is characterized by continuous curves with values in M. This con-
tinuity condition is central because it is equivalent to requiring the system to
look for actions that make the closed loop behavior satisfy the requirements of
the plant model.

13

The denotational semantics of each clause in ehe knowledge base is one of
the following:

1. a conservation principle,

2. an invariance principle, or

3. a constraint principle.

Conservation principles are one or more clauses about the balance of a par-
ticular process in the dynamics of the system or the computational resources.
For instance, equation (19) encoded as a clause expresses the conservation of
error for the Agent i's estimation of the plant.

consevationjof .error(p, t, [<?;,*], 5r,;, [Lk], A, Ui(t,p)) -+•

tf(i + 2A,p")=£
(Vi\p(Ui(t + Xp')))±J

;!

/* encoding of equation (13) */

Ui{t + £,i/) = Ui(t,p) + Sr,i(t,P) + '52QukLic(t,p,p) A (23)
k

I* encoding of equation (15) */

process.evolution{p,t,p") A /* encoding of equation (13) */

consevationjof jerrorip",t 4- 'X [Qitk], Sr,i, [Lk], X Ui(t + 2A,p")

Conservation principles always involve recursion whose scope is not neces-
sarily a single clause, as in the example above, but with chaining throughout
several clauses.

Invariance principles are one or more clauses establishing constants of the
evolution of agent's estimation error functions in a general sense. These prin-
ciples include stationarity, which plays a pivotal role in the formulation of the
theorems proved by the architecture, and geodesies. For example, in the state
estimation of multimedia processes,in variant principles specify quality response
requirements. That is, levels of performance as a function of traffic load that
the system must satisfy. The importance of invariance principles lies in the
reference they provide for the detection of unexpected events. For example, in
the state estimation of a multimedia process, the update time after a request is
serviced is constant, under normal operating conditions. An equational clause
that states this invariance has a ground form that is constant; deviation from
this value represents deviation from normality.

Constraint principles are clauses representing engineering limits to actuators
or sensors and, most importantly, rules of engagement.

The clause database is organized in a nested hierarchical structure illustrated
in Figure 5. The bottom of this hierarchy contains the equations that character-
ize the algebraic structure defining the terms of relational forms: an algebraic
variety [40].

14

Model Builder Realization

Dynamic Estimation Specifications

Estimation Performance Specifications

Generic
Estimation

Specifications

Process

Representation

Goal

Class
Representation

Laws of the Variety

Figure 5: Knowledge Base Organization

At the next level of the hierarchy, three types of clauses are stored: Generic
Estimation Specifications, Battlefield Representation and Goal Class Represen-
tation.

The Generic Estimation Specifications are clauses expressing general desired
behavior of the system. They include statements about stability, complexity and
robustness that are generic to the class of declarative rational controllers. These
specifications are written by constructing clauses that combine laws of the kind
which use the Horn clause format described earlier.

The Process Representation is given by clauses characterizing the dynamic
behavior and structure of the plant, which includes sensors and actuators. These
clauses are written as conservation principles for the dynamic behavior and as
invariance principles for the structure. As for the Generic Estimation Specifi-
cations, they are constructed by combining a variety of laws in the equational
Horn clause format.

The Goal Class Representation contains clauses characterizing sets of desir-
able operation points in the domain (points in the manifold M). For example,
Goal Class clauses could specify the type and size of permitted state estimation
errors. These clauses are expressed as soft contraints; that is, constraints that
can be violated for finite intervals of time. They expresss the ultimate purpose
of the controller but not its behavior over time.

The next level of the hierarchy involves the Estimation Performance Specifi-
cations. These are typically problem-dependent criteria and constraints. They
are written in equational Horn clause format. They include generic constraints
such as speed and time of response, and qualitative properties of state trajecto-

15

ries [35]. Dynamic Estimation Specifications are equational Horn clauses whose
bodies are modified as a function of the sensor and goal commands.

Finally, Model Builder Realization clauses constitute a recipe for building a
procedural model (an automaton) for generating variable instantiation (unifica-
tion) and for theorem proving.

3.1.2. The Planner:
The function of the theorem Planner, which is domain-specific, is to generate,

for each update interval, a symbolic statement of the desired behavior of the
system, as viewed, say by the agent j\ throughout the interval. The theorem
statement that it generates has the following form:

Given a set of primitve actions there exists state estimation action
schedule Vi\p of the form (16) and a fraction function differential
da(-) (Figure 4) in the control interval [t, t 4- A) such that da(-)
minimizes the functional

I Li{Vi(T,p),vi\p(GUT,p)))da(j>,dT) (24)
it

subject to the following constraints:

<fc(Si,*i(r + A,p) = Gi(t,Xi)

(local goal for the interval),

Y,Qi.m(p,t)Lm(p,t) = Vi(p,t) (25)
m

(interagent contraint, see (19))

and

/

t+A
da(p, dr) — 1

t

In (24), Li is the Estimation Lagrangian of the system as viewed by Agent
i for the current interval of control [t,t 4- A). This function, which maps the
Cartesian product of the state and estimation action spaces into the real line
with the topology defined by the clauses in the knowledge base, captures the
dynamics, constraints and requirements of the system as viewed by agent i
The Local Estimation Lagrangian function Lj is a continuous projection in the
topology defined by the knowledge base (see [32]) in the coordinates of the i-th
agent of the global Lagrangian function L that characterizes the system as a
whole. In (25), p represents the state of the process under control as viewed
by the agent and d is the parallel transport operator bringing the goal to the
current interval. The operator d is constructed by lifting to the manifold the
composite flow (see equation (14)). We note that the composite flow and the
action schedule are determined once the fraction function is known and that this
function is the result of the optimization (24), (25). In particular, the action

16

A«*nt I B«tiavlor Tr*|«*tory

Figure 6: Illustration of optimization

schedule is constucted as a linear combination of primitive actions (see equation
(16)).

The term da{-) in (24) is a Radon probability measure [36] on the set of
primitive estimation actions or derivations that the agent can execute for the
interval [t,t +■ A). It measures, for the interval, the percentage of time to be
spent in each of the primitive derivations. The central function of the control
agent is to determine this mixture of actions for each control interval. This
function is carried out by each agent by inferring from the current status of the
knowledge base whether a solution of the optimization problem stated by the
current theorem exists, and, if so, to generate corresponding actions and state
updates. Figure 6 illustrates the relations between the primitive actions and
the fraction of A they are active in the interval [t, t + A).

The expressions in (25) constitute the constraints imposed in the relaxed op-
timization problem solved by the agent. The first one is the local goal constraint
expressing the general value of the state at the end of the current interval. The'
second represents the constraints imposed on the agent by the other agents in
the network. Finally, the third one indicates that is a probability measure. Un-
der relaxation and with the appropriate selection of the domain (see [20], the
optimization problem stated in (24) and (25) is a convex optimization problem.
This is important because it guarantees that if a solution exists, it is unique
up to probability, and also, it guarantees the computational effectiveness of the
inference method that the agent uses for proving the theorem.

The construction of the theorem statement given by (24) and (25) is the cen-
tral task carried out in the Planner. It characterizes the desired behavior of the

17

process as viewed by the agent in the current interval so that its requirements
are satisfied and the system "moves" towards its goal in an optimal manner.

3.1.3. Adapter:
The function under the integral in (24) includes a term, referred to as the

"catch-all" potential, which is not associated with any clause in the Knowledge
Base. Its function is to measure unmodelled dynamic events. This monitoring
function is carried out by the Adapter which implements a generic commutator
.principle similar to the Lie bracket discused in section 2, see (24). Under this
principle, if the value of the catch-all potential is empty, the current theorem
statement adequately models the status of the system. On the other hand, if the
theorem fails, meaning that there is a mismatch between the current statement
of the theorem and system status, the catch-all potential carries the equational
terms of the theorem that caused the failure. These terms are negated and
conjuncted together by the Inferencer according to the commutation principle
(which is itself defined by equational clauses in the Knowledge Base) and stored
in the Knowledge Base as an adaptation dynamic clause. The Adapter then
generates a potential symbol, which is characterized by the adaptation clause
and corresponding tuning constraints: This potential is added to criterion for
the theorem characterizing the interval.

The new potential symbol and.tuning constraints are sent to the Planner
which generates a modified Estimation Lagrangian for the agent and goal con-
straint. The new theorem, thus constructed, represents adapted behavior of the
system. This is the essence of reactive structural adaptation in the our model

At this point, we pause in our description to address the issue of robustness.
To a large extent, the adapter mechanism of each controller agent provides the
system with a generic and computationally effective means to recover from fail-
ures or unpredictable events. Theorem failures axe symptoms of mismatches
between what the agent thinks the system looks like and what it really looks
like. The adaptation clause incorporates knowledge into the agent's Knowledge
Base which represents a recovery strategy. The Inferencer, discussed next, ef-
fects this strategy as part of its normal operation.

3.1.4. Inferencer:
The Inferencer is an on-line equational theorem prover. The class of theorems

it can prove are represented by statements of the form of (20) and (21), expressed
by an existentially quantified conjunction of equational terms of the form:

3Z[Wi{Z,p) rek V^p) A ... A Wn(Z,p) rek Vn(Z,p)) (26)

where Z is a tuple of variables each taking values in the domain D, p is a list of
parameters in D, and {Wit Vi} are polynomial terms in the semiring polynomial
algebra: _

£><n) (27)

18

with D = {D, (+, •, 1,0)) a semiring algebra with additive unit 0 and multiplica-
tive unit 1. In (26), reU, i = l,...,n are binary relations on the polynomial
algebra. Each rek can be either an equality relation (=), inequality relacion
(y£), or a partial order relation (<). In a given theorem, more than one partial
order relation may appear. In each theorem, at least one of the terms is a partial
order relation that defines a complete lattice on the algebra; that corresponds to
the optimization problem. This latice has a minimum element if the optimiza-
tion problem has a minimum. Given a theorem statement of the form of (26)
and a knowledge base of equational clauses, the inferencer determines whether
the statement logically follows from the clauses in the Knowledge Base, and if
so, as a side effect of the proof, generates a non-empty subset of tuples with
entries in M giving values to Z. These entries determine the agent's actions.
Thus, a side effect is instantiation of the agent's decision variables. In (27),
n is a set of primitive unary operations, {vi}, the infinitesimal primitive fields
defined in section 2. Each Vi maps the semiring algebra, whose members are
power series involving the composition of operators, on Z to itself:

Vi : D((Z)) H- D((Z)) (28)

These operators are characterized by axioms in the Knowledge Base, and are
process dependent. In formal logic, the implemented inference principle can
be stated as follows: Let 2 be the set of clauses in the Knowledge Base. Let
=*• represent implication. Proving the theorem means to show that it logically
follows from S, i.e.

E => theorem. (29)

The proof is accomplished by sequences of applications of the following in-
ference axioms:

(i) equality axioms

(ii) inequality axioms

(iii) partial order axioms

(iv) compatibility axioms

(v) convergence axioms

(vi) knowledge base axioms

(vii) limit axioms

The specifics of these inference axioms can be found in [12] where it is shown
that each of the inference principles can be expressed as an operator on the
Cartesian product:

D((W)) x D((W)) (30)

Each inference operator transforms a relational term into another relational
term. The inferencer applies sequences of inference operators on the equational

19

Theorem Equations

Inference Rules: a(. b, . c, . d, , e,

Figure 7: Conceptual Structure of the Proof Automaton

terms of the theorem until these terms axe reduced to either a set of ground
equations of the form of (31) or it determines that no such ground form exists.

Zi = ai,ai € D (31)

The mechanism by which the inferencer carries out the procedure described
above is by building a procedure for variable goal instantiation: a locally finite
automaton. We refer to this automaton as the Proof Automaton. This impor-
tant feature is unique to our approach. The proof procedure is customized to
the particular theorem statement and Knowledge Base instance it is currently
handling. The structure of the proof automaton generated by the inferencer is
illustrated in Figure 7.

In Figure 7, the initial state represents the equations associated with the
theorem. In general, each state corresponds to a derived equational form of the
theorem through the application of a chain of inference operators to the initial
state that is represented by the path,

Each edge in the automaton corresponds to one of the possible inferences.
A state is terminal if its. equational form is a tautology, or it corresponds to
a canonical form whose solution form is stored in the Knowledge Base. In
traversing the automaton state graph, values or expressions are assigned to
the variables. In a terminal state, the equational terms are all ground states
(see (31))- If the automaton contains at least one path starting in the initial
state and ending in a terminal state, then the theorem is true with respect to
the given Knowledge Base and the resulting variable instantiation is a valid
one. If this is not the case, the theorem is false. The function of the complete

20

Equational
Clauses

Polynomic
System

Canonical
Equation

Solution
Exists

Automaton

Automaton
Behavior

equality
inequality
partial order

Inferences canonical
Principles) transformation

convergence
limit

KS-equation

loop-prefix
decompostion

Figure 8: Summary of Inferencer Procedure

partial order term present in the conjunction of each theorem provable by the
inferencer is to provide a guide for constructing the proof automaton. This is
done by transforming the equations! terms of the theorem into a canonical fixed
point equation, called the Kleene-Schutzenberger Equation (KSE) [12], which
constitutes a blueprint for the construction of the proof automaton. This fixed
point coincides with the solution of the optimization problem formulated in (24)
(25), when it has a solution. The general form of KSE is :

Z = E(p)-Z + T{p) (32)

In (32), E is a square matrix, with each entry a rational form constructed from
the basis of inference operators described above, and T is a vector of equational
forms from the Knowledge Base. Each non-empty entry, Ei.j, in E corresponds
to the edge in" the proof automaton connecting states i and j. The binary
operator "■" between E[p) and Z represents the "apply inference toT' operator.
Terminal states are determined by the non-empty terms of T. The p terms are
custom parameter values in the inference operator terms in E(-).

A summary of the procedure executed by the inferencer is presented in Figure

8.
We note that the construction of the automaton is carried out from the

canonical equation and not by a non-deterministic application of the inference
rules. This approach reduces the computational complexity of the canonical
equation (low polynomic) and is far better than applying the inference rules
directly (exponential).

The automaton is simulated to generate instances of the state, action and

21

evaluation variables using an automaton decomposition procedure [37] which
requires nlog^n time, where n # of states of the automaton. This "divide and
conquer" procedure implements the recursive decomposition of the automaton
into a cascade of parallel unitary (one initial and one terminal state) automata.
Each of the resulting automata on this decomposition is executed independently
of the others. The behavior of the resulting network of automata is identical
with the behavior obtained from the original automaton, but with feasible time
complexity.

The inferencer for each Estimation Agent fulfills two functions: to generate
a proof for the system behavior theorem of each agent generated by the Planner
(equations (24) and (25)) and to function as the central element in the Knowl-
edge Decoder. We now describe its function for proving the behavior theorem.
Later, we will overview its function as part of the Knowledge Decoder.To show
how the inferencer is used to prove the Planner theorem, (24), (25), first, we
show how this theorem is transformed into a pattern of the form of (26). Since
(24). (25) formulates a convex optimization problem, a necessary and sufficient
condition for optimality is provided by the following dynamic programming for-
mulation:

Vi(Y,T) = infat J LiWifaY^VilpiGifaptydafrdT) (33)

— = mfaiHW,-j£-,cti)

where Y(t) = p and r 6 [t. t + A)

In (33), the function Vit called the optimal cost-to-go function, characterizes
minimality starting from any arbitrary point inside the current interval. The
second equation is the corresponding Hamilton-Jacobi-Bellman equation for the
problem stated in (24) and (25) where H is the Hamiltonian of the relaxed prob-
lem. This formulation provides the formal coupling between deductive theorem
proving and optimal control theory. The inferencer allows the real-time opti-
mal solution of the formal control problem resulting in intelligent distributed
real-time control of the multiple-agent system. The central idea for infering a
solution to (33) is to expand the cost-to-go function V{.,.) in a rational power
series V in the-algebra:

D(((Y,r))) (34)

Replacing V for Vj in the second equation in (33), gives two items: a set of
polynomic equations for the coefficients of V and a partial order expression
for representing the optimality. Because of convexity and rationality of V, the
number of equations to characterize the coefficients of V is finite. The resulting
string of conjunctions of coefficient equations and the optimality partial order
expression are in the form of (26).

In summary, for each agent, the inferencer operates according to the follow-
ing procedure.

Step 1: Load current theorem (24), (25).

22

Step 2: Transform theorem to equational form (26) via (33).

Step 3: Execute proof according to figure 8.

If the theorem logically follows from the Knowledge Base (i.e., it is true),
the inferencer procedure will terminate on step 3 with actions . If the theorem
does not logically follow from the Knowledge Base, the Adapter is activated,
and the theorem is modified by the theorem Planner according to the strategy
outlined above. This mechanism is the essence of reactivity in the agent. Be-
cause of relaxation and convexity, this mechanism ensures that the estimatable
set of the domain is strictly larger than the mechanism without this correction
strategy.

3.1.5 Knowledge Decoder:
The function of the Knowledge Decoder is to translate knowledge data from

the network into the agent's Knowledge Base by updating the inter- agent speci-
fication clauses. These clauses characterize the second constraint in (33). Specif-
ically, they express the constraints imposed by the rest of the network on each
agent. They also characterize the global-to-local transformations (see [22]).
Finally, they provide the rules for building generalized multipliers for incor-
porating the inter-agent constraints into a complete unconstrained criterion,
which is then used to build the cost-to-go function in the first expression in
(33). A generalized multiplier is an operator that transforms a constrain into a
potential term. This potential is then incorporated into the original Estimation
Lagrangian of the agent which now accounts explicitly for the constraint.

The Knowledge Decoder has a built-in inferencer used to infer the structure
of the multiplier and transformations by a procedure similar to the one de-
scribed for (14). Specifically, the multiplier and transformations are expanded
in a rational power series in the algebra defined in (34). Then the necessary con-
ditions for duality are used to determine the conjunctions of equational forms
and a partial order expression needed to construct a theorem of the form of (26)
whose proof generates a multiplier for adjoining the contraint to the Estimation
Lagrangian of the agent as another potential.

The conjunction of equational forms for each global-to-local transformation
is constructed by applying the following invariant embedding principle:

For each agent, the actions at given time t in the current interval,
as computed according to (33), are the same actions computed at t
when the formulation is expanded to include the previous, current,
and next intervals.

By transitivity and convexity of the criterion, the principle can be analyti-
cally extended to the entire horizon. The invariant embedding equation has the
same structure as the dynamic programming equation given in (33), but with
the global criterion and global Hamiltonians instead of the corresponding local
ones.

23

Battlefield

Part of the Battlefield
Monitored by the Agent

Part of the Battlefield
Monitored by rest of Agents

Agent
Companion

Agent

Synchronization

Figure 9: The Companion Agent

The local-to-global transformations axe obtained by inverting the global-to-
local transformations, obtained by expressing the invariant embedding equation
as an equational theorem of the form of (26). These inverses exist because of
convexity of the relaxed Lagrangian and the rationality of the power series.

It is important at this point to interpret the functionality of the Knowledge
Decoder of each agent in terms of what it does. The multiplier described above
has the effect of aggregating the rest of the system and the other agents into an
equivalent companion system and companion agent, respectively, as viewed by
the current agent. This is illustrated in Figure 9.

The aggregation model (Figure 9) describes how each agent perceives the
rest of the network. This unique feature allows us to characterize the scalability
of the architecture in a unique manner. Namely in order to determine compu-
tational complexity of an application, we have only to consider the agent with
the highest complexity (i.e., the local agent with the most complex criterion)
and its companion.

4 Constructing Estimation Lagrangians.

As described in the previous section, the Planner module of each agent A con-
structs an Estimation Lagrangian L(t,x,x) such that the desired evolution of
the system occurs when the system evolves along a curve x = C{t) which mini-

24

mizes Ä , .

L L(t,x,x)dt (35)
to

where x(t0) = x0 and x(tQ+A) = zi. Here in local coordinates, I = (I
1
,...,I")

and x = (i1,... ,xn).
We would like to modify the agent's Estimation Lagrangian by adding a

divergence free function to construct a Estimation Lagrangian with a special
property that when we reach our desired estimation for the system that the
resulting change in the estimation due to the flow is 0. That is, suppose that
S(t,x) is a smooth function (C2 is enough). Then

dS dS , -A dS
— = —- -p > -r-^XJ. (36)
dt dt f- dx> v ;

Now suppose that we replace the agent's original Lagrangian by

For any curve C(t) with C(£o) = xo and C(£o + A) = xi> ^et

J(C) = /°" L(t,C(t),C{t))dt (38)
■/to

J(<7) = / L(t,C(t),C(t))dt. (39)
■/to

Then
.7(C) - J(C) = S{t + A, n) - 5(t. x0). (-10)

Note that value of the left hand side of (40) does not depend on C so that that
the curve C" which minimizes J{C) also minimizes J(C).

We want to construct a geodesic field for agent .4.

xj =rb>(i,x) for j = l,...,n (41)

on the manifold M such that

Z(t,x,i) = 0 if xj =Tbj(t,x) for j = l,...,n (42)

Z(t, i, ±)' > 0 if otherwise. (43)

Note that this a very strong condition which would ensure that evolving the
system along a geodesic would result in no chage to our estimate. See (18).

In this section we shall explore the conditions that such an 5 must satisfy
and how we can construct the desired geodesic field.

To this end, we note that if there exists a curve x = C(t) which minimizes

/

to+A
L(t,x,x)dt (44)

'o

25

where x{t0) = x0 and x(t0 -r A) = x\, then L must satisfy the Euler-Lagrange
equations. That is, let Ej be the operator

1 dtKd±i' dxJ
for j - 1,. • •, n. Then L must statify the equations

EJ{L)=0ioTJ = l,...,n. (45)

This given, it will be useful for subsequent formulas to rewrite (45) in terms
of the canonical momentum p7' and the Hamiltonian of the system H. That is,
define „

p> = -TT-(i,x,i) for j = l,...,n. (46)
axj

We shall assume that
*.<££) *0 (47)

for all t,i,i. Given (47), we can use the Inverse Function theorem to solve for
the ±i's in terms of x, t, and p:

±*=tf'(i,x,p) j = l,...,n. (48)

We then define the Hamiltonian H of the system by
n

H{t,x,p) = -L{t,x,x) + '£pihi(t,x,p). (49)
7=1

It then is easily verified that

dJL = h>=±>, (50)

8H dL ,
5*7 = -M'"* (0l)

(52) dH_ _ _dL
dpi ~ dt'

It follows that the Euler-Lagrange equations are equivalent to the following.

fL: + f4 = 0forj = l,...,n. (53)
dt ox'

It follows from (42) and (43) that

Z(i,x1,...,zn,ii>1 wn) =mimZ(t,x,x). (54)

Thus the solution to (41) must satisfy

° = W
dL dS
d±i dxJ

, dS
= ?-Jxl-

26

Thus when x> = V{t, x,p) = &{t, x) for j = 1,..., n. then

•x dS u s Pj(t,Z,x) = Q^jtf'1)

so that pj is a function of just t and x. Moreover it must be the case that

0 = L(t,x,x)

Tf ., 8S r^dS.j

= i(*,x,*)-^-xyv

and hence S satisfies
|.W,x,|f)=0. (55)

We claim that if the (41), (42), and (43) hold and S(i, x) is a function such
that (55) holds and

»--gc**)-&<«•*)■ (36>

then the Wierstrass condition for the existence of a curve C{t) which is a strong
minimum for (44). It then follows that we can construct an e-approximation to
the geodesic fields via the techniques of [26].

To make our statement precise, we make the following definition, see [7].

Definition 4.1 The Weierstrass E-function of the functional

J[y] = / F{x,y,y)dx, y(a) = A, y(b) = B (57)
Ja

the function of 3n + 1 variables:

" Q f

E(x,y,x,w) = F(x,y,w)-F(x,y,z) - £(«/* -*i)^r- (53)
i=l

Then the following result is proved in [7].

Theorem 4.2 Let 7 be a curve which is extremal for the functional J[y] of (57)

and let
yi = 1>i(x,y)fori = l,...,n (59)

be a field for the functional J[y] of (57). Suppose that at every point (x,y) of
some (open) region containing 7 and covered by the field (59), the condition

E{x,y,ijj,w)>Q (60)

is satisfied for every finite vector w = (wl,... ,wn). Then J[y] has a strong
minimum for the extremal 7.

27

Now under our assumptions,

xj = hi{t,x,p) (61)

= ilP{t,x) for j = l,...,n.

Now take ft of both sides of (54), we get

dpi d2S A d2S +
dt ~ dtdxJ " ^ dxkdxJX ' (62)

Then taking the partial derivative with respect to xj of both sides of (55), we
get

dtdxJ dx> ^ dpk dxWx"

However since ±j = §|r for ;' = 1,... n, we can rewrite (63) as

(65)

■ dtdxi dx> ' f- dxidx

Combining (62) and (64), we get that

dt ~ dxi

for j = 1,... n. Note that this implies the system can be characterized by the
equations

±i = ¥Lj = l,...,n (66)

p> = J§i = l,...,n. (67)

Next observe that conditions (42) and (43) imply that

^_|^_y |^>0 (68)

with equality holding only if

xj =ipj(t,x).

Then (55) can be rewritten as

§-£<*,*,*)+!; Jl*=o. (69)

28

Solving for §f in (69) and substituting into (68). we set that

L(t,x,x) - L(t,x, tf) + £ WZ& ~ ^ - ° (70)
dxi

Thus since M- = p> = §£, we can derive that

I(t,ar,i)-I(t,ar,^)+f;^-(ii-^)>0 (71)

Next define the Wierstrass function E by
n

dxJ

Then (71) says that
E(t,x,ti,x)>0. (73)

Moreover by applying Mean Value Theorem twice, we get that

E(t,x,il,,x) = \^J^(t,z,z)&-V)(±k-*k) (74)

for some z = 9x-r(l- 9)w with 0 < 9 < 1. Thus if £(i, i, $, x) > 0, it must be
that

detl-j^r) > 0.

5 Agent Synchronization

Agent synchronization is based on the following result.

Theorem 5.1 For any agents AQ and Ai, let LQ and L\ be the corresponding
agent Estimation Lagrangian where for each i, Li is a function of the state
Xi, ±i, and the agent clock time t. We can explicitly construct state and clock
transformation functions ^ and *?x from the Noether invariance relations
such that for any given time interval I and e > 0,

I [Lo(x0,xo,t0) -Li(<a°x
1(xo,to),n1(xo,io),W{xo,to))}dto < e. (75)

The significance of this result is that one can explicitly construct transfor-
mation function to coherently fuse sensor data. That is, agents AQ and Ai may
have different models of the plant. Thus for agents A0 and Ai to be able to
communicate with each other, we need to construct transformations functions
which allow agent AQ to interprete agent Ai's state estimation. The theorem
says that such transformation functions not only exist but can be computed for

29

the Noether invariance relations. Moreover if agent Ao realizes that his state
is incompatible with the state information given by agent Ax, agent ,40 goes to
the adaptation loop to correct the incompatibility.

To illustrate Theorem 5.1, suppose that there is a global state estimation
function for the plant L(t,x,x) and we have two agents. Agent 1 with its Esti-
mation LagrangianLi(ri,:ri,xi) and Agent 2 with its state estimation function
Lo(h,x<>,X2)- Moreover assume that we have state and clock transition func-
tions for Agent i, i — 1,2, given by

xj =• x{(t,x,w) for j = l,...,n (76)

U = U(t,x,w) (77)

where w — (wl,... ,wn) is a set of parameters for the transformation. That is,
we assume

Li{xi(t,x,w),Xi(t,x,w),Xi{t,x,w))=L(t,x,x) (78)

for i = 1,2.
Next we shall state the Noether Invariance relations referred to in Theorem

5.1. We first need some notation. First we define two classes of infinitesimal
transformations to each Agent i.

Mu=0=^(r,x) (79)

and „

01-0 = n.* (SO)
Next let Eij, = 1,..., n, be the Euler-Lagrange operators for £,*. That is, let

This given, the Noether Invariance Relations are given by

for A; = 1,. ..,7i
The idea is that if the state estimation Lagrangian Li has an extremal, i.e.

if there exists a curve Xi(t) = d(t) which minimizes

L{t,.x,.±i)dtz (33)

where x{t0) = xQ and x[t0 + A) = n, then L must satisfy the Euler-Lagrange
equations Ei,j{Li) = 0 for j = 1,..., n*. In that case the left hand side of the
equations in (82) are 0 and hence there are constants c^,* such that

n< fl r i

/.

30

for k = 1,.. •, n There are two important aspects about (84). First note that
given the constants a,k, we can solve for the infinitesimals r^ and 9\k and

integrate to recover the desired transformation arj and U. We will illustrate
this type of calculation with a simple example below. Second, note that we
can monintor the failure of sychronization of the state estimation Lagrangians
by simply observing that the left hand side of (84) is not a constant. If the
left hand side of (84) is not a constant, then we know that the current agent
Lagrangian is not compatible with the system Lagrangian so that Agent i would
use the Adapter to reconstruct his Estimation Lagrangian.

Example 5.1 A simplified range model of radar returns has the following sys-
tem Lagrangian.

£ = '2(y-y)- (85)

Now suppose that Agent 1 has infinitesimal transformations

tl=t + r{x,t)w (86)

ii=i-i- 9(x, t)w (87)

Then from (82), we have

x s dd
{x--j)n-tx>+tx(- + -x) (88)

-x&-xdx- + t{x " T%^ s^ = °-
Collecting terms, we obtain the following relations.

*° : r+t9+ti§H (89)

, dr t2 dr „ ..,,
*" : tTJrtTx~-.Tt=Q (91)

i3 : |^=0 (92)
ox

Note that by (92), r = r(t) is just a function oft. Also (92) and (90) imply that
|| = 0 so that 9 = 9(x) is just a function of x. This means that (89) and (91)
are just ordinary differential equations which one can easily solve via standard
power series methods to show that

T = t (93)

6 = -\x. (94)

Hence

ti = t + tw (95)

xi = x - -xw. (96)

31

6 Conclusions
We have shown that our MAHEA architecure is an effective mechanism to solve
various problems of estimating a process in which the data available is dynamic,
noisy, and given in a multiplicity of representations. A MAHEA agent network
for estimating plant state is an efficient mechanism for state estimation which is
extensible, robust, scalable, allows crosschecking, and supports hetereogeneous
information.

Deployment of an agent based system is very simple. As soon as a new
source of information is available, a new estimation agent is spawned whose
Knowledge Base is a model of the plant covered by that source (extensibility).
Moreover no common representation of the data is required so that the system
supports hetereogeneous information sources. Thus our architecture allows us to
incorporate existing models and estimation techniques. The built-in invariance
condition tests for the validity of the data (crosschecking).

We have shown that the existing theory of hybrid systems and relaxed vari-
ation optimization can be adapted to the state estimation problem for the plant
bv constructing a Lagragian which becomes 0 at points which correspond to
consistent estimates of the plant and is positive at points which are not consis-
tent. This property ensures that when an agent reaches consistent estimates of
the plant, the evolution of the system produced by the flow of the corresponding
o-eodesic field is adapted to the current information of the plant as viewed by
each agent.

Another key result for agent synchronization is a theorem which we call the
Theveninn Theorem which states in a network with many agents, an individual
agent A can view the rest of the sensor agents as a single aggreagated agent
C(A) called .4's companion agent. Since an agent sees the rest of the estimate
agent network as a single equivalent estimation agent, the architecture maintains
linear complexity even as more agents are added. Details of these results will
appear in a future report

Finally the robustness of the sensor agent's estimates follows from the fact
that each MAHEA agent is computed by a finite state machine which is Lya-
punov stable because the mapping induced by an agent is a contraction mapping.

We note that the techniques introduced in this paper for synchronization and
consistency of state estimates can be adapted to solve synchronization problems
for our Mutiple Agent Hybrid Control Architecture. Again details will be given
a future report

References
[1] Antsaklis, P., Kohn, W., Nerode, A, and Sastry, S. eds., Hybrid Systems

II, Lecture Notes in Computer Science vol. 999, Springer-Verlag, (1995).

[2] Crossley, J.N., Remmel, J.B., Shore, R.A. and Sweedler, M.E., Logical
Methods Birkhauser, (1993).

32

i'3] Dodhiawala. R.T., V. Jagoenathan and L.S. Baum, "Erasmus System De-
sign: Performance Issues" Proceedings of Workshop on Blackboard Systems
Implementation Issues, AAAI, Seattle, WA., July 1987.

[4] Garcia, H.E. and A. Ray "Nonlinear Reinforcement Schemes for Learning
Automata" Proceedings of the 29th IEEE CDC Conference, Vol. 4, pp
2204- 2207, Honolulu, HA, Dec. 5-7, 1990.

[5] Ge, X., Kohn, W., Nerode, A. and Remmel, J.B., "Algorithms for Chatter-
ing Approximations to Relaxed Optimal Control. MSI Tech. Report 95-1,
Cornell University. (1995)

[6] Ge, X., Kohn, W., Nerode, A. and Remmel, J.B., "Feedback Derivations:
Near Optimal Controls for Hybrid Systems", to appear in Hybrid Systems
III, Springer Lecture Notes in Computer Science.

[7] Gelfand, I.M. and Fomin, S.V., Calculus of Variations, Prentice Hall, 1963.

[8] Grossman. R.L., Nerode, A., Ravn, A. and Rischel, H. eds., Hybrid Systems,
Lecture Notes in Computer Science 736, Springer-Verlag, (1993).

[9] Kohn, W., "A Declarative Theory for Rational Controllers" Proceedings of
the 27th IEEE CDC, Vol. 1, pp 131-136, Dec. 7-9, 1988, Austin, TX.

[10] Kohn, W., "Application of Declarative Hierarchical Methodology for the
Flight Telerobotic Servicer" Boeing Document G-6630-061, Final Report
of NASA- Ames research service request 2072, Job Order T1988, Jan. 15,
1988.

[11] Kohn, W., "Rational Algebras; a Constructive Approach" IR&D BE-499,
Technical Document D-905-10107-2, July 7, 1989.

[12] Kohn, W., "The Rational Tree Machine: Technical Description k Mathe-
matical Foundations" IR&D BE-499, Technical Document D-905-10107-1,
July 7, 1989.

[13] Kohn, W., "Declarative Hierarchical Controllers" Proceedings of the Work-
shop on Software Tools for Distributed Intelligent Control Systems, pp
141-163, Pacifica, CA, July 17-19, 1990.

[14] Kohn, W., "Declarative Multiplexed Rational Controllers" Proceedings of
the 5th IEEE International Symposium on Intelligent Control, pp 794-803,
Philadelphia, PA, Sept. 5, 1990.

[15] Kohn, W., "Declarative Control Architecture" CACM Aug 1991,Vol34,
No8.

[16] Kohn. W., "Advanced Architectures and Methods for Knowledge-Based
Planning and Declarative Control" IR&D BCS-021, ISMIS'91, Oct. 1991.

33

[17] Kohn, W. and Murphy, A., "Multiple Agent Reactive Shop Floor Control"
ISMIS'91, Oct. 1991.

[18] Kohn W., "Multiple Agent Inference in Equational Domains Via Infinites-
imal Operators1' Proc. Application Specific Symbolic Techniques in High
Performance Computin g Environment". The Fields Institute, Oct 17-20
1993.

[19] Kohn W., "Multiple Agent Hybrid Control" Proc of thhe NASA-ARO
Workshop on formal Models for Intelligent Control, MIT .sept 30- Oct2,
1193. Will appear as a paer in IEEE Ac.

[20] Kohn, W. and Nerode, A., "Multiple Agent Declarative Control Architec-
ture" Proc. of the workshop on Hybrid Systems, Lygby, Denmark, Oct
19-21, 1992.

[21] Kohn, W. and Nerode, A., "Foundations of Hybrid Systems" In Hybrid
Systems, Nerode. A, R, Grossman Eds. Springer Verlag series In Computer
Science #726,

New York, 1993.

[22] Kohn W., and Nerode, A., "Multiple-Agent Hybrid Systems" Proc. IEEE
CDC 1992, vol 4, pp 2956, 2972.

[23] Kohn. W. and Nerode. A., "An Autonomous Systems Control Theory: An
Overview" Proc. IEEE CACSD'92, March 17-19, Napa, Ca.,pp 200- 220.

[24] Kohn W„ and Nerode A. "Models For Hybrid Systems: Automata, Topolo-
gies, Controllability, Observability" In [8], (1993) 317-356.

[25] Kohn W. and Nerode, A., "Multiple Agent Hybrid Control Architecture"
In Logical Methods (J. Crossiey, J. B. Remmel, R. Shore, M. Sweedler,
eds.), Birkhauser, (1993) 593-623.

[26] Kohn, W., Nerode. A. and Remmel, J.B., " Hybrid Systems as Finsler
Manifolds: Finite State Control as Approximation to Connections", In [1],
(1995)

[27] Kohn, W., Nerode, A. and Remmel, J.B., "Continualization: A Hybrid
Systems Control Technique for Computing", to appear in the proceedings
of CESA'96.

[28] Kohn, W., Nerode, A. and Remmel, J.B., "Feedback Derivations: Near
Optimal Controls for Hybrid Systems", to appear in CESA'96.

[29] Kohn, W. and T. Skillman, "Hierarchical Control Systems for Autonomous
Space Robots" Proceedings of AIAA Conference in Guidance, Navigation
and Control, Vol. 1, pp 382-390, Minneapolis, MN, Aug. 15-18, 1988.

[30] Kowalski, R., "Logic for Problem Solving" North Holland, NY, 1979.

34

[31] Kuich. W. and Salomaa. A., "Semirings. Automata. Languages'' Springer
Verlag, NY., 1985.

[32] Lloyd, J.W. "Foundations of Logic Programming" second extended edition,
Springer Verlag, NY, 1987.

[33] Liu, J.W.S., "Real-Time Responsiveness in Distributed Operating Systems
and Databases" proceedings of the Workshop on Software Tools for Dis-
tributed Intelligent Control Systems, Pacifica, CA.. July 17-19, 1990, pp
185-192.

[34] Nii, P.H., "Blackboard Systems: The Blackboard Model of Problem Solving
and the Evolution of Blackboard Architectures" the AI Magazine, Vol. 7,
No. 2, Summer 1986, pp 38-53.

[35] Padawitz, P., "Computing in Horn Clause Theories" Springer Verlag, NY,
1988.

[36] Robinson, J.A., "Logic: Form and Function" North Holland, NY, 1979.

[37] Skillman, T. and Kohn, W., et.al, "Class of Hierarchical Controllers and
their Blackboard Implementations" Journal of Guidance Control ic Dy-
namics, Vol. 13, Nl, pp 176-182, Jan.-Feb., 1990.

[38] Warner, F.W., Foundations of Differential Manifolds and Lie Groups,
Scott-Foresman, Glenview, 111.

[39] Warga, K., "Optimal Control of Differential and Functional Equations"
Academic Press, NY., 1977.

[40] Young, L.C., "Optimal Control Theory" Chelsea Publishing Co., NY, 1980.

35

